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A B S T R A C T   

In recent years, renewable and sustainable energy sources have attracted the attention of various investors and 
stakeholders, such as energy sector agents and even consumers. It is perplexing to observe and anticipate the 
required levels of photovoltaic generation, which are inherent tasks for such rapid insertion into the electric grid. 
This distributed/renewable generation must be integrated in a coordinated way such that there is no negative 
impact on the electric performance of the grid, increasing in the complexity of energy management. In this 
article, a methodology for photovoltaic generation forecasting is addressed for a horizon of one week ahead, 
using a new approach based on an artificial neural network (ANN) ensemble. Two main questions will be 
explored with this approach: how to select the ANNs, and how to combine them in the ensemble. The design of 
experiments (DOE) approach is applied to the photovoltaic time series factors and ANN factors. Then, a cluster 
analysis is performed to select the best networks. From this point on, a mixture (MDE) is employed to determine 
the ideal weights for the ensemble formation. The methodology is detailed throughout the paper and, based on 
the combination of forecasts, the photovoltaic generation was estimated for a specific panel set located in the 
state of Minas Gerais, Brazil, reaching the value of 4.7% for the weekly mean absolute percentage error. The 
versatility of the proposed method allowed the change of the number of factors to be used in the experimental 
arrangement, the forecast model, and the desired forecast horizon, and consequently enhancing the forecasting 
determination.   

1. Introduction 

For many decades, the unidirectional flow of electric energy from 
generators to transmission, distribution and consumption at the end user 
has remained practically unchanged. From this perspective, distribution 
networks were not designed to support the insertion of generation units 
[1], but rather are based a unidirectional energy flow that carries energy 
from a substation to the final consumer [2]. Therefore, it is essential that 
there be a significant change in the paradigm of the energy supply sys-
tem for the following reasons: (a) the shortage of fossil fuels leads to 
environmental and energy problems and (b) renewable energy has 
attracted the interest of many investors in different regions in recent 
years [3]. 

With the advent of smart grids, photovoltaic (PV) generation fore-
casts are key to managing distribution networks, micro-grids, or smart 
homes [4]. The system performance, as well as operational decisions, 

can be improved based on load or generation forecasts [5]. The main 
benefits of a more accurate forecast highlight the chances of avoiding 
over-voltages, which are observed when the PV generation is larger than 
the demand [6]. Some countries, such as Spain, provide incentives for 
better predictions of the next-day solar income level [7]. 

In comparison to load forecasting errors, which are generally 
approximately 1%–3% [8], generation errors (solar and wind) are 
significantly more substantial, reaching average values of 15%–20% [8]. 
Knowing that PV generation is highly uncertain and difficult to predict 
[9], it is of paramount importance to classify the forecast horizons ac-
cording to Refs. [10]: long-term forecasts for periods longer than 1 
month; medium-term forecasts for a range of 1–7 days; and short-term 
forecasts for a few hours ahead. The short- and medium-term horizons 
are the most studied, owing to the uncertainties related to climate 
dependence and the consequent decrease of reliability as the desired 
horizon increases. The importance of each horizon can be quantified 
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according to the actions that must be taken (or avoided) at different 
moments of time. Short-term forecasts are useful for dealing with 
over-voltages [8], which can not only compromise the grid security in 
terms of over-loading of equipment, but can also cause permanent 
damage on motors, electronics, and electro-electronics [2]. 
Medium-term forecasts, which are the scope of this work, are used by 
operators to determine reserve requirements, storage dispatches and 
energy quality [11]. Long-term forecasts are useful for market decisions 
[12] and sector investments [13]. 

The artificial neural networks (ANN) was the technique chosen to be 
used in this work owing to its importance in the literature, as even 
studies that do not directly apply ANN mention that ANN plays an 
important role in PV generation forecasting [14]. 

As forecasting should provide both clarity and reliability [15], the 
forecasting method, presented in this work, is based on a design of ex-
periments (DOE) approach, to assist in the choice of factors (both series 
and prediction models) that may result in more accurate estimates. DOE 

is a statistical tool in which each experimental run is a test, and it allows 
an investigator to discover some information regarding a process or 
system [16]. 

In the sequence, the best configurations observed in the DOE 
approach will be maintained, through a cluster analysis, to form a 
combined forecast. An ensemble tends to improve the results of the in-
dividual models [17]. The proposed combination considers that the 
definition of the ensemble weights is calculated by a mixture analysis. 

Two issues are noteworthy in this scenario: a) Simulated processes 
often require a high number of combinations to test all possible solutions 
and b) forecasting models can generate more than one potential solution 
to the problem and it is not known, for sure, which is the best. 

The originality of this methodology, applied to photovoltaic gener-
ation forecasting, aims to cover these gaps and is supported by two main 
pillars. The first one is, knowing that the processing architecture of 
current computers is limited, the application of DOE to reduce the 
number of combinations related to the ANN parameterization is 

Table 1 
Summary of related works.  

Author and year Forecasting method Forecast 
horizon 

Exogenous variables Parametrization Comment 

Zhen et al. 
(2020) [18] 

Hybrid model based on ANN, 
CNN, and LSTM 

Minute Sky image and solar irradiance Number of layers and neurons Some parameters of the forecast models 
have not been specified. Some of them 
are defined by scanning a range of 
values. 

Theocharides 
et al. (2020) 
[19] 

ANN Hourly 
day-ahead 

Incident global irradiance, 
ambient temperature, relative 
humidity, wind direction and 
speed, solar azimuth and 
elevation angles 

Neurons, layers and epochs. Parameters were defined by scanning a 
range of values. 

Sangrody et al. 
(2020) [20] 

Similarity-based forecasting 
models (SBFMs) 

Minute 
day-ahead 

Temperature, humidity, dew 
point, wind speed, irradiance 
and sky cover data 

Based on k-nearest neighbors 
(KNN). Grid search method is 
applied to find optimal k. 

At a certain point, the combination 
yielded larger errors. The parametric 
configuration of the model is not 
detailed. 

Pan and Tan 
(2019) [21] 

Based on cluster analysis and 
ensemble regression. 

Hourly 
day-ahead 

Hourly day-ahead Hyperparameters selected using 
the grid search method. 

Clusters based on climatic variables 
require greater computational effort 

Wen et al. 
(2019) [22] 

Deep recurrent neural 
network with long short-term 
memory units (DRNN-LSTM) 

Hourly 
month- 
ahead 

Global horizontal radiation, 
and diffuse horizontal 
radiation 

Bayesian hyperparameters 
optimization 

Automated parameterization is 
efficient, but still requires considerable 
processing effort when each forecast is 
performed. Combined forecasting is not 
explored. 

Ozoegwu 
(2019) [23] 

ANN Month up 
to two 
years 

Sunshine, temperature, 
cloudiness, precipitation, 
relative humidity, dew point, 
temperature, soil temperature, 
evaporation and pressure. 

Fixed: One hidden layer with 20 
hidden neurons. Levenberg- 
Marquardt training algorithm. 
Tangent sigmoid and linear 
transfer functions 

The combination is performed between 
the models and not between the results 
of different predictors. Here, a new 
hybrid model is generated. 

Qing and Niu 
(2018) [24] 

Long Short-term memory 
(LSTM) networks and ANN 
using the classical 
backpropagation algorithm 
(BPNN) 

Hourly 
day-ahead 

Temperature, dew point, 
humidity, visibility, wind 
speed and descriptive weather 
summary 

Vary, depending on the 
benchmark 

Some parameters are randomly defined 
and others are found by combining 
many executions, which increases 
processing. Combined forecasting is not 
explored. 

Bugala et al. 
(2018) [25] 

ANN Hourly 
day-ahead 

Sunny hours, length of the 
day, air pressure, maximum 
air temperature, daily 
insolation and cloudiness 

Parameters were estimated using 
a heuristic algorithm 

For each forecasting round, the 
parameters must be estimated using 
heuristics, which increases the 
computational effort. 

Ravinesh and 
Sahin (2017) 
[26] 

ANN Seasonal 
and Month 

Satellite-derived data and land 
surface temperature 

Several parameters were trailed. 
Model architecture may vary (55 
for monthly forecasting and 9 for 
seasonal forecasting) 

Although the model is parsimonious, 
there is a variation in the model 
architecture that stresses a variety of 
parameters, such as training algorithm 
and activation function. It is not 
indicated how the relationship between 
the parameters influences the result. 

Sivaneasan and 
Goh (2017) 
[27] 

ANN and fuzzy logic for pre- 
processing weather data 

Month Cloud cover, temperature, 
wind speed, and wind 
direction with irradiance 
value 

Fixed: Levenberg-Marquardt 
training algorithm, 25 hidden 
neurons and tangent sigmoid as 
the activation function 

There is no indication whether 
changing a given parameter improves 
or worsens the results. Combined 
forecasting is not explored 

Cervone et al. 
(2017) [28] 

ANN and Analog Ensemble Hourly 3 
day-ahead 

Global horizontal irradiance, 
cloud cover, air temperature, 
solar azimuth and elevation 

From 4 to 20 hidden neurons ANN is initialized several times for the 
same station and the parameters are 
defined by searching a range of values 

Lima et al. 
(2016) [29] 

ANN Hourly 
day-ahead 

Relative humidity, 
temperature, wind speed, 
cloud cover, precipitable 
water 

One hidden layer, hyperbolic 
tangent as activation function, 
Levenberg Marquardt as training 
algorithm 

Parameters were defined by scanning a 
range of values. Some of them are not 
discussed or presented.  
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attractive, keeping statistical reliability. The second one is related to 
how to choose or combine the forecast results. In this case, it is proposed 
to apply the hierarchical cluster analysis to select the best networks and 
then use Mixture DOE to perform an ensemble. 

The paper is divided as follows. Section 2 analyzes some related 
works, and discusses the main prediction methods, ANNs, and DOE. 
Section 3 describes the originality of the methodology for PV fore-
casting, which will be detailed throughout this work. Section 4 presents 
a case study for the forecast of a week ahead from recent generation 
data, obtained from a plant located in Minas Gerais, Brazil. Finally, 
Section 5 highlights the conclusions. 

2. Background and literature review 

This section investigated some of the most relevant related works as 
well as the gaps to be noted:  

• Many of these works do not explore the potential of combined 
forecasting;  

• In most cases, the parameters of the forecasting model are not 
formally defined, instead chosen empirically, fixedly, randomly or 
even by scanning a range of values. When this happens, it is not 
possible to identify which parameters influence the result, as well as 
it may require considerable computational effort when processing 
numerous possibilities. 

It was also observed that some studies focus mainly on the forecast of 
solar radiation and not on the photovoltaic generation forecasting, as 
there may be a quite difference in the adherence of the forecast models 
in terms of uncontrollable factors, such as dust on the panels, damaged 
sensors, panel efficiency, etc. The following Table 1 summarizes these 
works, presenting the main characteristics and a critical comment on 
issues not addressed: 

Zhen et al. [18] proposed a hybrid model, based on convolutional 
neural networks (CNN), Long Short-Term Memory (LSTM) and Artificial 
Neural Network (ANN), to forecast photovoltaic energy in real time. The 
normalization method was not discussed by the authors. First, the sky 
image pre-processing step requires high computational effort to extract 
features. Then, some parameters of the forecasting models are defined 
by scanning a range of values. As it is a real-time operation (15 min), it 
may not be an interesting operation if the model has to be recalibrated. 
The parameters adjusted for the neural network were the hidden layers 
and the number of neurons. It was not possible to see how the interaction 
between the model parameters affects the result. 

Theocharides et al. [19] presented the photovoltaic energy forecast 
for a day ahead, with hourly resolution. The model is based on Artificial 
Neural Networks and uses the linear regressive correction method to 
adjust the forecast results using solar irradiance. No method of data 
normalization is discussed by the authors. The architecture of the fore-
casting model was configured based on the input data, which means that 
an empirical scan was performed to find the best parametric values in a 
data range. Post-processing combines K-means clustering and a linear 
regressive model. 

Sangrody et al. [20] proposed the photovoltaic generation prediction 
through similar forecasting methods chosen through the k-nearest 
neighbors (KNN) method. The data normalization takes into account the 
feature scaling method, which considers the maximum and minimum 
values of the time series. The parametric configuration of the forecast 
model is not detailed and is defined by the grid search method. At a 
given moment, the authors report that the accuracy of the forecast is 
strictly related to the choice of climatic variables and that the process of 
combining some results did not promote improvements in the forecast. 

The forecasting method proposed by Pan and Tan [21] makes use of 
cluster analysis to classify meteorological characteristics and then uses 
ridge regression to determine the weights of the ensemble. The forecast 
horizon for a day ahead was addressed, with hourly resolution. The 

normalization method used the maximum and minimum values of the 
time series. It was discussed that, in the first stage (cluster analysis), both 
generation data and only climatic data can be used. However, for the 
latter, the computational cost in terms of processing can be considerably 
increased. Hyperparameters were selected using the grid search method. 

Wen et al. [22] performed an integrated forecast involving load and 
photovoltaic generation. The data was normalized using maximum and 
minimum values. The experiments were implemented in the Python 
programming language and, to define the parameters of the prediction 
model, an automated method is used that investigates the search space 
using Bayesian optimization. Of course, this type of search is more 
efficient than a manual or random scan, but it still consumes processing 
for each forecast that is performed. The photovoltaic forecast is esti-
mated hourly for the period of one month ahead. 

In Ref. [23], author developed a methodology aimed to forecast solar 
radiation for a year ahead horizon of monthly mean daily. This forecast 
is useful for the dimensioning of photovoltaic energy and also for agri-
cultural activities. It is noticed that the case study, carried out in Nigeria, 
involved the comparison of several neural network architectures, 
implemented by the authors using the Matlab software, with fixed 
parameterization. The authors’ idea focuses on the combination of the 
forecasting models and not on the results. This hybrid model uses the 
number of the month as part of the inputs in the long-term solar fore-
casting process. 

Qing and Niu [24] performed a comparison between the Long 
Short-term memory (LSTM) networks and ANN models using the clas-
sical backpropagation algorithm (BPNN) for solar irradiance prediction. 
Depending on the benchmark, there was variation in the number of 
epochs, the number of hidden layers and the number of neurons per 
layer. Thus, there was a scan to test a range of parameters in each, which 
led to an increase in processing to find the ideal values. The linear 
scaling normalization method was used in the pre-processing of the in-
puts. The exogenous variables here are hourly weather forecasts for a 
specific day and will be used for photovoltaic forecast generation. The 
complete setup of the forecasting models was not presented and some 
parameters were defined through empirical execution to reach a certain 
value. 

A selection of variables through the Pearson correlation coefficient 
was observed in Bugala et al. [25]. The authors analysed seven variables: 
number of sunny hours, maximum air temperature, daily sunshine, 
cloudiness, daytime duration and air pressure. The latter two were 
considered statistically irrelevant for the linear regression model and 
were not used. For the neural network, only the variable air pressure was 
ignored and a neural network of the radial basis function (RBF) type was 
generated for the prediction, with six neurons in the input layer, five 
neurons in the hidden layer and one neuron in the output layer. The 
error obtained by the RBF network 6: 6-5-1: 1 was considerably low, 
causing the authors to recommend their application for a day-ahead 
forecast. However, the study did not address the predictive impacts 
from a parametric variation in the neural network. 

Ravinesh and Sahin [26] proposed a methodology for forecasting 
solar radiation for territories that have satellite data coverage. The 
normalization of the input data occurred through maximum and mini-
mum values of the time series. The implementation took place through 
the Matlab software and several parameters were trialed, such as 
training algorithm and activation function. Network architecture may 
vary depending on the forecast context (monthly or seasonal). Although 
the neural network model is parsimonious, there was an intense para-
metric variation for each architecture that is generated and, conse-
quently, increases the computational effort in terms of processing each 
time the forecast is performed. It is not indicated how the relationship 
between the parameters influences the result. 

The work of Sivaneasan and Goh [27] applied ANN to evaluate the 
daily forecast for a period of one month ahead. The accuracy in the 
results was due to the application of fuzzy logic in the pre-processing of 
the inputs. The authors defined the parameterization of the neural 
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model in a fixed way, with 8 neurons in the input layer, 25 hidden 
neurons, tangent sigmoid as the activation function and 
Levenberg-Marquardt as training algorithm. A three-month period 
(January to March 2017) of climate data was chosen for training the 
model. It was not possible to identify in the work if these parameters 
were randomly defined or if they were found from the intensive pro-
cessing of several combinations of executions. It is not discussed in the 
paper whether the change in certain parameters of the model may 
change the results or not. 

Based on actual weather data and PV generation data from three 
power plants in Italy, Cervone et al. [28] proposed a forecast for 72 h 
ahead using an ANN and analog ensemble. The authors considered the 
solution scalable, and produced more reliable results when the methods 
were combined. However, the definition of the weights of this combi-
nation was done iteratively, generating approximately 1002 and 3004 
combinations, and required parallel processing to obtain the results. 
ANN was initialized several times for the same station and the param-
eters were defined by searching a range of values. 

Lima et al. [29], knowing that Brazil has enormous potential for 
producing PV energy, conducted a study to predict solar irradiance 
while considering a horizon of 24 h ahead. The authors used a cluster 
analysis to identify regions of the map with similar climatic character-
istics. Several parameters were tested for each of the 110 stations in 
order to establish coherence between the results and the observed 
irradiation values, which demands high computational cost. The study 
did not consider a statistical analysis of the influence of varying the 
neural network parameters in the prediction, but revealed that the 
processing performed with this model increases the reliability of the 
forecast, and generates consistent results. 

Some authors [30] have considered predicting the irradiation of a 
region based on the predictions of irradiation for neighbouring sites, as 
emitted by meteorological entities. In this case, the solution proposed by 
Ref. [30], based on neural networks, could be considered evolutionary, 
as the model is fed back with previous predictions as it advances chro-
nologically in time. The authors only considered varying the number of 
network inputs, and fixed the values of parameters such as the number 
of hidden layers, activation function, and number of neurons. 

In [31], the authors considered a systematically selected analysis of 
38 articles. The searches were guided by keywords like “Big Data”, “Data 
Mining”, and “Machine Learning”, i.e., all related to the forecast of PV 
energy. In short, they found that neural networks have more accurate 
prediction algorithms than other models. 

A comprehensive literature review was conducted by Das et al. [13], 
where the authors explored PV prediction from different perspectives: 
(a) the pre-processing of model inputs through normalization, (b) the 
correlation between input variables and generation data, (c) a short 
forecast horizon, (d) analysis of the performance of the methods, (e) 
details of the error evaluation criteria, and (f) analysis of the methods of 
forecasting, recent works from the perspectives of the techniques used, 
and the accuracy of the results. The authors concluded that neural 
networks and models based on a support vector machines (SVM) pro-
mote good execution, and have good adherence to the data. The most 
frequently used metric for error evaluation is the root mean square error 
(RMSE), and the most exploited horizon for forecasting is the short term. 
In this sense, knowing the scarcity of analyses for a medium-term period, 
our work intends to contribute with a forecast for a horizon of one week 
ahead. 

The literature review examined by Sobri et al. [32] evaluated the 
different PV forecasting techniques and the recent progress achieved in 
this area. The analysis performed by the authors considered factors 
including the method of forecasting, time horizon, and error metric. In 
addition to finding that the application of the ANN and SVM methods is 
advantageous for the solution of nonlinear problems, they also showed 
that the ensemble-based models try to extract the precision and 
robustness of the individual methods. 

Finally, the literature review presented by Barbieri et al. [33] aimed 

to list the methods used to forecast PV energy, as well as to review the 
statistical methods used for this purpose. In addition, the authors 
compared the different time horizons in terms of performance and 
ranking. The time setting is set according to the system operation. For 
long-term horizons, the suggestion is to use models based on numerical 
weather prediction (NWP). 

Most studies do not cover a study horizon greater than 48 h [34], 
Aiming to fill this gap, this work will investigate the PV forecast for a 
horizon of one week ahead. 

2.1. Forecasting methods 

PV forecasting methods are generally classified as physical models or 
statistical models [36]. The physical models describe the physical state 
and characteristics of the generation plant, such as location, different 
meteorological variables [10], shadow effects, module type, and azi-
muth/tilt angle [11]. Statistical models consider data history, and 
attempt to extract knowledge from the past to forecast a time-series 
[32]. 

According to Sobri et al. [32], the statistical models include ANNs, 
SVMs, Chain Markov models, autoregressive models and regression 
models. The ANN has been extensively applied in many studies 
regarding non-linear time series problems (intrinsically associated with 
the prediction of PV generation) [37]. Even those studies that do not use 
neural networks in their analyses, mention that ANN is an important 
prediction technique [31]. 

2.2. Artificial neural network (ANN) ensemble 

Neural networks are algorithms whose principle of functioning is 
inspired by the functioning of the brain [32]. Basically, the structure is 
composed of three layers: the input layer, hidden layer, and output layer 
[22]. Each layer has a specific number of nodes (or neurons) that 
interconnect one layer to another. The connection between the neurons 
is defined by weights, calculated iteratively in a training stage [28]. The 
networks have a random initialization in the training process [38], and 
learning is acquired based on the adjustment of weights, until an 
established criterion is reached [2], i.e., in a criterion to map the 
non-linearity between the inputs and the outputs [39]. 

A MLP network fully interconnects the layers, and is regulated based 
on supervised learning [40]. The modeling of a network with k inputs, 
only one output y and h hidden neurons is mapped by Equation (1) [33]: 

y= y(x;w)=
∑h

j=0

[

wjf

(
∑k

i=0
wji ⋅ xi

)]

(1) 

The weights and biases are represented by i and j, which interconnect 
the layers, and the network parameters are represented by the vector w. 
Considering that in most cases the neural network has a random 
initialization of weights and also has several parameters with a range of 
choices, we can obtain different results from each mapped configura-
tion. The challenge is to determine which configuration (or set of them) 
promotes good model adjustments to the data. 

An ensemble, initially proposed by Ref. [41], seeks to extract features 
from a model that, when combined, describes better results. In this 
work, the combination technique will be discussed in Sections 3.5 and 
3.6. 

2.3. Design of experiments (DOE) for ANN parameterization and time 
series factor selection 

DOE is a tool that uses mathematical and statistical resources, and 
allows an analyst to understand certain phenomena that influence a 
desired process output [16]. This technique lets one build arrangements 
that allow the analyst to discover information regarding experimental 
setups that promote minor prediction errors. 
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At this point, the factors must be carefully selected with their 
respective levels. There are many possibilities to choose from, but 
observation is recommended as important in literature. The DOE 
approach allows for a small number of experiments to be performed in 
simulation process; therefore, its application becomes advantageous 
[42]. The bases for choosing each factor, as well as their respective 
levels, are detailed in the next section. 

3. Proposed methodology 

The proposed methodology is summarized in Fig. 1, and essentially 
uses DOE. The DOE factors are divided into two groups: ANN factors, 
and time series factors. The cluster analysis hierarchically selects fore-
cast groups with the potential to compose a combined forecast. The 
mixture analysis applied to the cluster group tends to improve the pre-
diction error decrease. 

The next sections describe each step, starting from the historical 
generation series to the desired series of prediction. The forecast horizon 
considered was one week ahead. 

3.1. Time Series Factors 

A step that is commonly addressed in raw data pre-processing is a 
normalization method. The normalization process is an important step 
for machine learning algorithms. In general, this process aims to rescale 
or converts the original data set to a new standard. There is no consensus 
in the literature regarding the best normalization method, but some of 
them involve transforming the data using mean, standard deviation, 
maximum and minimum values. Some authors consider that, in addition 
to improving the accuracy of the forecasting algorithms, the normali-
zation process also contributes positively to an improvement in perfor-
mance [43]. In this case, the main goal is to reduce the magnitude, retain 
input correlations and keep the data on a scale that is close that of the 
neural network transfer functions. From this perspective, this work has 
adopted two methods that are commonly used in research of this nature. 

The first method, usually called standardization, was applied in some 
studies focusing on PV forecasting [44], and scales data into a 0–1 in-
terval by dividing every single observation “yi” by the max value of time 
series “max(Y)“. For each generation value “i“, the corresponding 
normalized “ŷi” is calculated using Equation (2): 

ŷi =
yi

max(Y)
(2) 

The second method, usually called feature scaling, is often applied 
for pre-processing input data [20]. It consists of, same as before, keeping 
data between range the 0 and 1 through the division of the observed 
value “yi” minus the minimum value of the series “min(Y)“, by the 
subtraction of the maximum value “max(Y)” and minimum value. The 
formula is shown in Equation (3): 

ŷi =
yi − min(Y)

max(Y) − min(Y)
(3) 

The use of external variables is a common method for improving the 
forecasting process, and should be considered when there is a strong 
correlation [13]. Meteorological data, such as temperature, irradiance, 
humidity, wind speed, hours of sunshine, cloud cover, and precipitation, 
are examples of these types of data. This measure can be positively or 
negatively correlated. The former indicates that, the series can increase 
or decrease proportionately, and, the second case indicates that one 
series can increase while another decreases (proportionally). This 
behaviour can be calculated using Pearson’s correlation formula, and 
some other studies [19] has adopted this approach indeed: 

ρx,y =
cov(x, y)

σxσy
=

1
n

∑n
i=1(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n
i=1(xi − x)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n
i=1(yi − y)2

√ (4) 

Originally, data series are obtained with the observations ordered in 
time. For some authors [10], the use of similar days may contribute to 
improvements in the forecasting result. To investigate whether there is 
any relationship between PV productions on the same days of the week, 
this work propose to unstack the data considering each day of the week, 
resulting in seven separate data series. When the forecast is performed, if 
the data is unstacked, each time series is used as the input for the model, 
considering the specific day of the week. The unstacking process is 
summarized in Fig. 2. 

The number of observations in the time series may vary depending 
on the measurement site, the condition of the equipment used, the 
storage devices, and the periodicity of the information collected. 
Considering this information, the methodology initially proposes the use 
of all available data for training the model, and at a second time, the use 
of a reduced part of this data history to evaluate the impacts on the 
forecast results. 

3.2. ANN Factors 

The layers that lie between the input layer and the output layer are 

Fig. 1. Proposed methodology for photovoltaic (PV) generation forecast using artificial neural network (ANN), design of experiments (DOE), cluster analysis, and 
mixture DOE (MDE). 

M.O. Moreira et al.                                                                                                                                                                                                                             



Renewable and Sustainable Energy Reviews 135 (2021) 110450

6

known as the hidden layers. Each layer of an ANN has a specific number 
of neurons. Based on [45], the number of hidden layers chosen varies 
between one or two, with zero or three being rarely used. 

Basically, each epoch represents a process of training the model with 
a set of data. The number of times the algorithm iterates over the same 
data to increase the accuracy of the output corresponds to the number of 
epochs. Evidently, increasing this number tends to increase the accuracy 
of the response, and consequently tends to increase the computational 
cost for processing the model. 

This factor is related to the number of neurons in the input layer of 
the model. Depending on the data structure (as discussed before), 
training inputs and outputs can be organized from two different per-
spectives. The first one considers the data unstacked by the day of the 
week, while the other uses the data series in its original format. 

For example, if a number of inputs is considered equal to three, the 
training configuration for the model will be as summarized in Fig. 3. In 
all cases, there will be only one output as the desired value. 

As discussed in Ref. [46], the number of neurons in the intermediate 
layers plays an important role in prediction performance. Some authors 
consider defining the number of neurons randomly [47], whereas others 
consider it in a systematic way, such as [48]. 

Even knowing that there is no consensus in the literature for the 
definition of neural network architecture and that it depends on the 

nature of the problem being considered [49], this work considered the 
study of the nonlinear time series presented by Ref. [45], which used the 
following formula for the calculation of the number of neurons in the 
intermediate layers: (K × (N+1)), where N is the number of inputs, and 
K=1.5, 2. 

The learning rate can be considered as the step size for finding the 
solution of the problem and should be chosen carefully, as high values 
can lead to a fast convergence of the algorithm to sub-optimal solution 
points, and low values can lead to process stagnation in the search space. 

As discussed in Ref. [45], the learning rate considered in this work 
may be 0.1 or 0.9. 

Two algorithms were chosen to form the basis of the neural network 
training in the experiments carried out. The training algorithms are 
responsible for updating network weights and bias values [50]. The first 
algorithm, the scaled conjugate gradient (SCG), is often applied to the 
training process [51]. The second algorithm, Levenberg-Marquardt, was 
selected because it has been considered in the literature to have superior 
performance in for training feedforward neural networks [52]. 

Transfer (or activation) functions aim to compute the output of a 
layer from the data arriving from the immediately preceding layer. In 
this work, two functions were considered: radial basis [49] and hyper-
bolic tangent sigmoid [46]. Table 2 shows mathematical and graphical 
representations for each function. 

Original Time Serie
Day kWh

2017-05-17 Sun 43,19
2017-05-18 Mon 55,71
2017-05-19 Tue 102,32 Sun Mon Tues Wed . Sat
2017-05-20 Wed 96,73 43,19 55,71 102,32 96,73 . 102,36
2017-05-21 Thu 107,47 91,28 121,53 118,42 103,57 . 119,79
2017-05-22 Fri 65,71 36,75 . . . . .
2017-05-23 Sat 102,36 . . . . . .
2017-05-24 Sun 91,28 . . . . . .
2017-05-25 Mon 121,53 . . . . . .
2017-05-26 Tue 118,42
2017-05-27 Wed 103,57
2017-05-28 Thu 29,67
2017-05-29 Fri 118,85
2017-05-30 Sat 119,79
2017-05-31 Sun 36,75
2017-06-01

New series, unstacked by day of week

.

.

.

Fig. 2. Data Structure: sequential or unstacked by day of week.  

Step Inputs considering unstacked data by day of week Inputs considering original time series

1 Fri Fri Fri Fri
may 19 may 26 jun 02 jun 09 Sun Mon Tue Wed

2 Fri Fri Fri Fri Fri Sun Mon Tue Wed Thu
may 19 may 26 jun 02 jun 09 jun 16

n Fri Fri Fri Fri Fri Fri x (x+1) (x+2) (x+3)
x (x+7) (x+14) (x+21)

Fig. 3. ANN training steps considering unstacked and sequential data.  
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3.3. Factorial DOE 

The number of experimental runs increases exponentially as the 
number of factors increases. This can be a problem when there is a 
shortage of resources or time for examining all possible combinations. 

The experimental matrix should be defined based on the factors and 
their respective levels. Thus, the amount of effort can be understood as 
the resolution to be employed in the experiment, and is defined by a 
predetermined design. Effort reduction refers to a fraction of the full 
factorial design, in cases where it is not possible to perform all combi-
nations. In general, inferences can be made with a high level of confi-
dence when performing fractional experiments. In Fig. 4, the red 
resolutions (identified by III) should be carefully considered, as the 
number of runs can be significantly too low. 

In this simulated process, there are 11 factors (4 time series factors +
7 ANN factors) with two levels each. Thus, it would spend 2k trials to test 
all combinations, where k corresponds to the number of factors, reach-
ing a total of 2048 experimental runs for this analysis. This number is 
considerable for further analysis, and particularly if parameterization is 
implemented manually for each test. 

To reduce the number of runs, DOE allows one to design the exper-
iment with effort reduction without compromising the experimenter’s 
inference analysis, through formula 2(k-p), where p represents the effort 
reduction. Here the resolution IV is used, with 211− 6 effort reduction. 

3.4. Cluster Analysis 

The cluster analysis was performed to separate the best forecasting 
results (obtained by DOE) with similar characteristics, for further com-
bination. It allows one to build a tree structure that interconnects in-
formation in groups through a linkage method, named the 
“dendrogram”. The dendrogram is agglomerative, and is commonly 
designed with a bottom-up approach, where smaller clusters are 
grouped into larger clusters. 

The grouping is based on Ward’s linkage method and a Euclidean 
distance measurement. Ward’s method seeks to minimize the sum of 
squared deviations internally in each cluster [29], from points to cen-
troids (and therefore the variance between elements). Initially, each 

point is considered as a cluster and the sum of the squares of deviations 
is zero. As the clusters intersect, the sum of the squares of the deviations 
increases. 

The object of interest is the group with the smallest mean absolute 
percentage error (MAPE) values that have similarity. The significance of 
the differences between group pairs is statistically identified by a one- 
way analysis of variance, using Tukey’s comparison as the primary 
procedure. 

3.5. Mixture DOE 

Combined forecasting tends to produce more accurate results. In this 
sense, this proposal seeks to achieve this combination through a mixture 
experiment. A mixture analysis considers the factors as “ingredients”, 
and denotes that the proportions must be equal to 1 (one) [16]. The aim 
of the mixture is to find the weights that provide a prediction error 
smaller than the error obtained by the best individual prediction 
component. 

For instance, w1, w2, …, wN, are the weights that make up the 
ensemble, where N is the number of components to be combined (pre-
viously selected through cluster analysis). Thus, w1 + w2 + … + wN = 1. 

Fig. 5 (adapted from Ref. [16]) shows two simplex centroid designs. 
The first one (a) analyses the combination using three components, and 
w1 + w2 + w3 = 1. The second one (b) considers four components, and w1 
+ w2 + w3 + w4 = 1. Each vertex of the triangle or tetrahedron is 
considered a “pure mixture”, i.e., the ratio of the other components to 
that vertex is null. For example (considering the triangle), when w2 = 1, 
w1 and w3 are automatically zero. The number of points is related to the 
number of components considered in simplex centroid design and is 
generalized by formula (2c – 1), where ‘c’ is the total number of 
components. 

The ensemble proposed uses weights defined by the mixture analysis, 
as applied to the results selected by the cluster analysis. Thus, the 
following Equation (5) models mathematically this combination: 

ŷi =
∑n

i=0
wi.yi (5)  

Here ‘w’ are the weights, and ‘y’ are the forecasted values chosen by the 
cluster analysis. 

3.6. Confidence Region 

A confidence region allows one to evaluate whether points within the 
ellipse follow the same characteristics as most of the data in the original 
set. In this case, a confidence region is built based on insolation data and 
generation power. Suppose that there is a variance-covariance matrix 
sigma (S). The following equation defines an ellipse (when the number 
of variables p = 2) centered on the mean (x) with a constant distance c: 

Table 2 
Mathematical and graphical representation of transfer functions, according to Matlab® catalog.  

Function Type Mathematical Representation Graphical Representation 

Radial Basis f(x) = e− (δx)2  

Hyperbolic Tangent Sigmoid 
f(x) =

(ex − e− x)

(ex + e− x)

Fig. 4. Available factorial designs with respective resolution. Based on Mini-
tab software. 
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(x − x)
′

S− 1(x − x)= c2 (6) 

A spectral decomposition of the rotated ellipse can be written as: 

(x − x)
′

PΛ− 1P′

(x − x)= c2 (7) 

In the above, Λ matrix is represented by the eigenvalues of S, denoted 
by: 

Λ=

[
λ1 0
0 λ2

]

(8) 

The P matrix is defined by the eigenvectors of S: 

P=

[
cosθ − senθ
senθ cosθ

]

=

[
h11 h12
h21 h22

]

(9) 

Thus, in these terms: 

[P
′

(x − x)]
′

Λ− 1/2Λ− 1/2[P
′

(x − x)] = c2 (10)  

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[P′
(x − x)]

′

Λ− 1/2Λ− 1/2[P′
(x − x)]

√

=
̅̅̅̅̅
c2

√
(11)  

Λ− 1/2[P
′

(x − x)] =
̅̅̅̅̅
χ2

√
(12)  

[P
′

(x − x)] =
̅̅̅̅̅
χ2

√
Λ1/2 (13) 

Assuming that Pis orthonormal, P− 1 = P′ : 
[
P− 1(x − x)

]
=

̅̅̅̅̅
χ2

√
Λ1/2 (14)  

(x − x)=P
[ ̅̅̅̅̅

χ2
√

Λ1/2
]

(15) 

Fig. 5. Simplex design using three components (a) and using four components (b). Adapted from Ref. [16].  

Fig. 6. Pseudocode of the proposed methodology in each instance presented before.  
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x= x + P
[ ̅̅̅̅̅

χ2
√

Λ1/2
]

(16) 

The general equation can be written as: 
[

x1
x2

]

=

[
x1
x2

]

+

[
c
̅̅̅̅̅
λ1

√
h11cos∝ − c

̅̅̅̅̅
λ2

√
h12sin∝

c
̅̅̅̅̅
λ1

√
h21cos∝ + c

̅̅̅̅̅
λ2

√
h22sin∝

]

c=
̅̅̅̅̅̅̅̅̅̅̅̅̅
χ2
(p,∝/2)

√
; 0<∝<2π

(17) 

Finally, the pseudocode that summarizes the proposed methodology 
can be seen in Fig. 6. Forecasts using DOE were implemented using 
Matlab software. In this case, the DOE matrix is read from a text file, and 
its values work as vector indices representing the factors of the experi-
ment. Each row of the DOE matrix represents an experimental run. 

At this point in the paper, it is worth highlighting two important 
limitations: the first one is that, since DOE leads to a reduction in 
computational effort, there is no guarantee of obtaining the best fore-
casting solution (as well as no other forecasting method, presented in the 
literature, is able to do it [53]). The second one is that there are un-
controllable factors (such as dust on the panels, damaged meteorological 
sensors, unavailability of data in the time series, etc.) that were not 
considered in this study and that can cause variation in results from one 
plant to another. 

However, the key to good results is to choose the levels of DOE 
factors in a systematic way. Even if there is a change from one place to 
another, the DOE allows an analysis of the interaction between the 
factors and how the relationship between the variables [54] interferes in 
the accuracy of the result. From this perspective, a forecasting system 
can be implemented to automatically recognize the factors that are 
negatively influencing the results. The factors discussed above are 

processed to predict one week ahead, and the MAPE is calculated. 
Therefore, using Minitab software, the cluster analysis and mixture DOE 
(MDE) are performed. The confidence ellipsoid is created using a 
formulation in Excel software. 

4. Case study for a Brazilian site 

The purpose of this study is to predict the PV generation for the 
horizon of one week ahead, using daily discretized data. There are 686 
observations, covering the period from May 21, 2017 to April 6, 2019. 
The desired forecast week is the range from March 31 to April 6 (2019). 

These data were collected from a solar plant with an installed 
generating capacity of approximately 35 kWh, located at the Federal 
Institute of Southern Minas Gerais State, city of Carmo de Minas, Brazil. 
The exogenous time series data available for this analysis included 
cloudiness, hours of insolation, temperature, precipitation, and humid-
ity, and were obtained from National Meteorological Institute - Brazil 
(INMET). The choice of an exogenous variable for the preparation of the 
experiment was selected using Pearson’s correlation coefficient. 

Table 3 summarizes the correlations found, and points to the hours of 
insolation as the variable with the highest index, at 0.811. This variable, 
hours of insolation, will be used in the composition of an experimental 
factor, whose two levels indicate the presence of a correlated variable or 
not (only the generation data is used in this last case). 

For this specific problem, the contour plot shown in Fig. 7, allows for 
a different way of analysing generation data, and for seeing trends more 
clearly than in the time series graph. This graph works as a frequency 
map, where the color denotes the level of electricity generation. The 
extremes are blue and yellow, where the first represents the minimum 

Table 3 
Pearson’s correlation coefficient analysis on exogenous variables. All the results are statistically significant with a p-value < 5%.  

CORRELATIONS kWh Cloudiness Insolation Temperature Precipitation 

Cloudiness − 0.529     
Insolation 0.811 − 0.759    
Temperature 0.723 − 0.225 0.509   
Precipitation − 0.22 0.409 − 0.372 − 0.135  
Humidity − 0.683 0.639 − 0.75 − 0.424 0.331  

Fig. 7. Contour plot for weekly PV energy analysis of a generation site located in Minas Gerais, Brazil.  

Table 4 
ANN DOE factors with two levels each.   

(A) 
Hidden layers 

(B) 
Epochs 

(C) 
Inputs number 

(D) 
Units per layer 

(E) 
Learning rate 

(F) 
Train function options 

(G) 
Transfer function 

Level (1) 1 100 3 1.5 0.1 {scg} Scaled Conjugate Gradient {htg} Hyperbolic Tangent Sigmoid 
Level (2) 2 400 5 2 0.9 {lm} Levenberg-Marquardt {rbf} Radial Basis Function  
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generation, and the second represents the maximum generation. Along 
the horizontal axes, the day of the week can be seen, and along the 
vertical axes, the index of the week. 

For instance, by the 20th week there is a yellow zone, which means 
that it was sunny and the generation was high. By the 60th week, there is 
low generation, visually identified by the blue color zone. The dotted 
lines, in red color, indicate the approximate year/month of that week. 

Through these lines, it is possible to identify the times of the year when 
the generation is higher or lower. 

4.1. Pre-experimental planning 

As there are 11 factors, divided into 7 neural network factors and 4 
time series factors, the experiment was prepared with an effort reduction 
of 211− 6. This means that only 32 experimental runs are required to solve 
this fractional factorial DOE, whose resolution is IV. 

The ANN was parameterized and implemented using Matlab soft-
ware. The ANN factors are listed in Table 4, along with their respective 
levels. 

The time series factors were considered as a function of the data 
structure (unstacked or not), type of normalization, use of correlated 
variables (hours of insolation), and number of points (few or many). 
These levels are summarized in Table 5. 

4.2. Forecasting data using ANN and DOE 

The conduct of the experiments can be observed from Table 6. Here, 
the alphabetic identifications and respective levels are mapped from the 
previous two tables (Tables 4 and 5). In each experimental run, it is 
possible to observe the MAPEs of each day of the week, followed by the 
weekly average. The minimum average value found for the target week 
was 4.99%, and the maximum value was 46.23%. The last column Fig. 8. Main effects for MAPE.  

Table 6 
Fractional factorial DOE and associated mean absolute percentage errors (MAPEs) for PV generation forecast considering one week ahead. It uses a 211− 6 design.  

Run ANN factors Time series factors MAPEs Std 

A B C D E F G H I J K Sun Mon Tue Wed Thu Fri Sat Mean 

1 1 100 3 1.5 0.1 scg hts t fs n 98 35.43 35.88 6.96 13.89 35.64 22.51 46.41 28.10 14.06 
2 2 100 3 1.5 0.1 lm hts t mv y 98 26.04 26.52 22.85 27.95 16.42 67.13 42.83 32.82 17.10 
3 1 400 3 1.5 0.1 lm rbf t fs n 679 10.52 32.90 15.73 20.21 24.44 20.48 4.51 18.40 9.28 
4 2 400 3 1.5 0.1 scg rbf t mv y 679 21.09 44.03 13.57 8.28 17.43 28.85 47.19 25.78 14.99 
5 1 100 5 1.5 0.1 lm rbf f mv n 98 11.94 12.38 17.76 11.04 18.72 2.81 3.62 11.18 6.18 
6 2 100 5 1.5 0.1 scg rbf f fs y 98 13.22 19.40 12.67 21.79 11.08 40.82 41.96 22.99 13.14 
7 1 400 5 1.5 0.1 scg hts f mv n 679 9.40 9.48 18.41 7.96 16.69 5.16 4.70 10.26 5.35 
8 2 400 5 1.5 0.1 lm hts f fs y 679 3.96 46.86 38.57 49.79 36.61 73.20 74.60 46.23 24.09 
9 1 100 3 2 0.1 scg rbf f mv y 679 4.00 5.81 0.08 8.18 1.34 25.09 26.10 10.08 10.93 
10 2 100 3 2 0.1 lm rbf f fs n 679 0.50 0.78 8.10 4.55 17.70 1.18 2.09 4.99 6.22 
11 1 400 3 2 0.1 lm hts f mv y 98 20.10 43.31 35.23 46.15 33.32 69.02 70.39 45.36 18.61 
12 2 400 3 2 0.1 scg hts f fs n 98 4.23 0.87 7.81 1.53 12.10 10.42 10.14 6.73 4.53 
13 1 100 5 2 0.1 lm hts t fs y 679 21.08 24.36 17.10 24.86 6.13 31.87 41.64 23.86 11.17 
14 2 100 5 2 0.1 scg hts t mv n 679 1.47 16.27 21.31 42.11 29.68 24.04 22.10 22.42 12.39 
15 1 400 5 2 0.1 scg rbf t fs y 98 26.50 18.87 10.58 17.90 4.66 37.76 44.31 22.94 14.25 
16 2 400 5 2 0.1 lm rbf t mv n 98 16.65 1.45 5.12 21.58 16.72 3.79 29.81 13.59 10.50 
17 1 100 3 1.5 0.9 scg hts f fs y 679 3.53 8.45 35.65 46.85 33.94 69.65 39.52 33.94 22.55 
18 2 100 3 1.5 0.9 lm hts f mv n 679 3.60 1.57 12.33 11.29 23.88 7.34 8.86 9.84 7.30 
19 1 400 3 1.5 0.9 lm rbf f fs y 98 21.07 19.43 12.69 21.81 11.10 40.85 41.99 24.14 12.49 
20 2 400 3 1.5 0.9 scg rbf f mv n 98 10.79 8.29 7.72 8.07 1.91 30.40 5.24 10.34 9.27 
21 1 100 5 1.5 0.9 lm rbf t mv y 679 15.61 26.62 19.12 29.46 3.50 60.79 55.17 30.04 20.90 
22 2 100 5 1.5 0.9 scg rbf t fs n 679 21.06 16.15 24.55 20.20 25.12 36.45 3.22 20.97 10.07 
23 1 400 5 1.5 0.9 scg hts t mv y 98 26.55 24.59 26.94 35.87 14.82 61.94 64.27 36.43 19.24 
24 2 400 5 1.5 0.9 lm hts t fs n 98 2.08 18.23 8.26 51.24 14.78 12.52 1.45 15.51 16.95 
25 1 100 3 2 0.9 scg rbf t mv n 98 0.69 1.04 0.07 0.43 22.73 6.75 10.41 6.02 8.36 
26 2 100 3 2 0.9 lm rbf t fs y 98 23.57 23.11 15.59 25.07 12.57 40.40 40.82 25.87 11.03 
27 1 400 3 2 0.9 lm hts t mv n 679 8.47 12.84 11.88 6.79 14.05 7.80 10.26 10.30 2.74 
28 2 400 3 2 0.9 scg hts t fs y 679 3.15 10.35 13.69 51.31 5.32 39.40 35.71 22.71 19.08 
29 1 100 5 2 0.9 lm hts f fs n 98 9.72 13.27 13.85 12.62 19.72 7.79 6.25 11.89 4.49 
30 2 100 5 2 0.9 scg hts f mv y 98 18.79 43.25 35.17 46.11 33.26 68.95 70.31 45.12 18.89 
31 1 400 5 2 0.9 scg rbf f fs n 679 22.17 17.78 22.42 16.13 23.51 3.03 2.24 15.33 9.07 
32 2 400 5 2 0.9 lm rbf f mv y 679 17.25 11.01 4.70 13.41 3.52 30.78 29.66 15.76 10.96  

Table 5 
Time series DOE factors with two levels each.   

(H) 
Unstacked by day of week 

(I) 
Normalization method 

(J) 
Using correlated variable 

(K) 
Number of points 

Level (1) {t} True {fs} Feature Scaling {n} No 98 
Level (2) {f} False {mv} Max Value {y} Yes 679  
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presents the standard deviation for each run. 
As this is a highly volatile data series (owing to the nature of the 

climate uncertainties associated with the generation process), there may 
be errors in the forecasting process that vary from week to week, and 
also from region to region. 

From this numerical perspective, the configuration that contributed 
to the reduction of MAPE was: two hidden layers; 100 epochs; three 
neurons in the input layer; six neurons in the intermediate layers (cor-
responding to the calculation of 2 × 3 = 6); a learning rate equal to 0.1; 
the Levenberg-Marquadt training algorithm; RBF; the sequential data 
series (disregarding unstacked); a feature scaling normalization method; 
the use of the PV generation series only (disregarding the exogenous 
variable insolation); and the use of all available observations (679 
measurements). 

Fig. 9. (a) Dendrogram using Ward’s linkage with Euclidean distance (b) One-way analysis of variance using Tukey’s comparison procedure.  

Table 7 
DOE mixture for ensemble weights definition.  

Mixture points (for each run number selected) Individual MAPEs Mean Std 

10 (w1) 12 (w2) 18 (w3) 25 (w4) Sun Mon Tue Wed Thu Fri Sat 

1.000 0.000 0.000 0.000 0.50 0.78 8.10 4.55 17.70 1.18 2.09 4.99 6.22 
0.000 1.000 0.000 0.000 4.23 0.87 7.81 1.53 12.10 10.42 10.14 6.73 4.53 
0.000 0.000 1.000 0.000 3.60 1.57 12.33 11.29 23.88 7.34 8.86 9.84 7.30 
0.000 0.000 0.000 1.000 0.69 1.04 0.07 0.43 22.73 6.75 10.41 6.02 8.36 
0.500 0.500 0.000 0.000 2.36 0.83 7.95 3.04 14.90 4.62 4.02 5.39 4.74 
0.500 0.000 0.500 0.000 2.05 0.40 10.21 7.92 20.79 4.26 5.48 7.30 6.81 
0.500 0.000 0.000 0.500 0.59 0.91 4.01 2.06 20.22 2.78 4.16 4.96 6.87 
0.000 0.500 0.500 0.000 3.91 0.35 10.07 6.41 17.99 1.54 0.64 5.84 6.39 
0.000 0.500 0.000 0.500 2.46 0.96 3.87 0.55 17.42 8.58 10.28 6.30 6.15 
0.000 0.000 0.500 0.500 2.14 0.27 6.13 5.43 23.30 0.29 0.77 5.48 8.22 
0.333 0.333 0.333 0.000 2.78 0.03 9.41 5.79 17.89 0.63 0.27 5.26 6.54 
0.333 0.333 0.000 0.333 1.80 0.90 5.28 1.88 17.51 5.33 6.15 5.55 5.67 
0.333 0.000 0.333 0.333 1.59 0.08 6.78 5.14 21.44 0.59 0.18 5.11 7.66 
0.000 0.333 0.333 0.333 2.84 0.11 6.69 4.13 19.57 3.28 3.90 5.79 6.38 
0.250 0.250 0.250 0.250 2.25 0.28 7.04 4.23 19.10 2.16 2.40 5.35 6.42 
0.625 0.125 0.125 0.125 1.37 0.53 7.57 4.39 18.40 0.49 0.15 4.70 6.62 
0.125 0.625 0.125 0.125 3.24 0.58 7.42 2.88 15.60 6.29 6.27 6.04 4.85 
0.125 0.125 0.625 0.125 2.93 0.65 9.68 7.76 21.49 2.59 3.23 6.90 7.17 
0.125 0.125 0.125 0.625 1.47 0.66 3.48 1.90 20.92 4.46 6.40 5.61 7.03  

Fig. 10. Tetrahedron representing a configuration of weights that will make up 
the combination (w1, w2, w3, w4) = (0.625, 0.125, 0.125, 0.125). 

Fig. 11. Confidence ellipsoid for desired forecasting week.  
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In contrast and still considering a numerical perspective, the 
configuration that contributed negatively (i.e., to the increase of MAPE) 
was as follows: two hidden layers; 400 epochs; five neurons in the input 
layer; eight neurons in the intermediate layers (1.5 × 5 = 7.5, rounded 
to 8); a learning rate equal to 0.1; the Levenberg-Marquadt training 
algorithm; a tangent sigmoid hyperbolic transfer function; a sequential 
data series (disregarding unstacked); a feature scaling normalization 
method; the use of hours of sunshine as an exogenous variable in the 
network inputs; and the use of all observations available (679 
measurements). 

Only the numerical evaluation can induce one to misinterpret those 
factors that significantly impact the quality of the forecast. Therefore, 
the proposed methodology, based on DOE, allows to identify which 
factors are statistically significant in terms of promoting improvements 
in MAPE reduction. This inference is important to guide forecasts for 
different periods. 

Through a graph of the main effects, we can see that two factors 
obtained p-values less than 5%: the transfer function, and the use of 
correlated variables (in this case, hours of insolation). 

From Fig. 8 it is possible to see this happening; interpreting this chart 
is easy. Each box represents a factor and its variation, from level 1 to 
level 2. The more horizontal the line is, the stronger the indication that if 
there is a variation in the factor level, there will be no or little variability 
in the response (which in this case is the MAPE). A steeper the slope of 
the line indicates that this factor tends to impact the response when 
there are variations in its levels. 

At this point, the predictions and their respective errors were 
calculated. The best forecasts aim to promote a combination that re-
duces the average MAPE for the desired week. Naturally, the choice of 
components to compose this combination, known as the ensemble, must 
be conducted systematically. From the dendrogram (Fig. 9a), it is easy to 
identify a group of interest, composed by four elements of the previous 
experimental runs: lines 10, 12, 18 and 25. 

Statistical separation was performed based on Ward’s linkage 
method, with a Euclidean measurement distance and 10 clusters or 
groups. A one-way analysis of variance using Tukey’s comparison pro-
cedure (Fig. 9b) was performed to ensure that the groups were statisti-
cally different from each other, and that they had the lowest mean MAPE 
(numerically). In Fig. 9b, the cut line appears with a mean MAPE of 
approximately 9.5%. Group 8 of Fig. 9b corresponds to the group of 
interest from Fig. 9a. 

Having chosen the group with the best forecasts, considered indi-
vidually, it is expected that the combination of these results will lead to a 
reduction in the weekly mean MAPE. Based on this, the next section 
discusses the applied MDE-based strategy for ensemble formation. 

4.3. Combining results 

As discussed previously, the main motivation of this study is to 
construct a systematic combination of predicted values to decrease the 
prediction error. The combination technique was based on the definition 
of the weights that would provide the lowest MAPE, using the MDE. For 
this specific case, a group containing four elements was selected, rep-
resenting the predicted values of experimental runs 10, 12, 18 and 25, 
which are w1, w2, w3 and w4, respectively. Table 7 shows the mixture 
data. 

Each line assumes a combination with a predetermined weight. In 
this case, it should be noted that the first four lines of this mixture design 
consider only the individual forecast, weighing 1, and zero for the 
others. 

From Table 7 it is possible to verify that the weights setting that 
reduces the average MAPE has a larger effect for the first forecast 
component, indicated by w1. Thus, the geometric representation of this 
weight distribution is shown in Fig. 10, where there is the formation of a 
tetrahedron. The positioning coordinates of the ideal ensemble point 
transcribe as (w1, w2, w3, w4) = (0.625, 0.125, 0.125, 0.125). In this 

case, the mean MAPE dropped to 4.70%. 

4.4. Confidence region 

The confidence region allows one to verify that the data are statis-
tically similar to each other in the same interval. Points found outside 
the region delimited by the ellipse do not have the same characteristics, 
and can be considered statistically different. In this sense, it is aimed to 
check if the forecast results belong to the ellipsoid. From Fig. 11, the 
points highlighted in red correspond to the combined forecast, and are 
within the limits of the ellipsoid. 

For ellipsoid construction, the following variance-covariance sigma 
matrix based on generation and insolation data, and centered on means 
of 113.8 (kWh) and 6.7 (hours of insolation) was used: 

S=
[

1167.35 79.50
79.50 9.21

]

(18) 

The eigenvalues were calculated for λ1 = 1172.78 and for λ2 = 3.78. 
The associated eigenvectors of Swere stored in the following matrix: 

P=

[ e1
0.998 e2− 0.068
0.068 0.998

]

(19) 

Thus, the research was successful in its goals. The next section lists 
the final conclusions. 

5. Conclusions 

In this paper, a methodology for PV generation prediction was pro-
posed. Although the literature reveals a variation in the prediction ac-
curacy and there is no consensus on a generic prediction method that 
meets all cases, the forecasting area is a constant target of studies. 

The originality of the proposed methodology reduces the number of 
simulated experimental runs through the fractional factorial, and allows 
the analyst to infer regarding decisions to be made with a high level of 
confidence. The versatility of the proposed method allows changing the 
number of factors to be used in the experimental arrangement, the 
forecast model, and the desired forecast horizon. 

The penetration of PV generation in power grids has intensified, and 
the precision of power forecasting promotes system reliability, in addi-
tion to allowing energy management efficiency. The predictive tech-
nique chosen, the ANN, is widely used in the literature for this purpose. 
The ANN had its parametric configuration systematically defined based 
on DOE, with the experimental design 211− 6. 

The implementation of this methodology, when there is interest, 
should take into account some considerations empirically related to non- 
controllable factors, which must be carefully observed: deposit of resi-
dues on the panels, such as dust; damaged weather sensors (or even 
when there is no proximity to the generation plant); unavailability of 
information or data (null values - this compromises learning and the 
accuracy of forecasting models); intensity and frequency of cloud cover 
(there are indications that some types of photovoltaic panels produce 
more energy when the cloud moves away due to the temporary cooling 
of the cells during the shading period); wind speed (the intensity of wind 
can dissipate heat, which increases the efficiency of the panels). These 
factors can interfere with the forecasting result, naturally, since it leads 
to represent levels of photovoltaic generation that do not match the 
expected. 

Apart from that, DOE allows the analysis of which variables interfere 
in the forecast result, which can be systematically changed. From this 
point on, a forecasting system can be implemented to automatically 
recognize the factors that are negatively influencing the results. 

Further works can evaluate different forecasting horizons, different 
factors, and different forecasting models. Integration with weather 
variables can be investigated by considering the extraction of common 
features through principal component analysis, rather than just selecting 
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the one with the highest correlation. 
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